• scikit-bio™ is an open-source, BSD-licensed, python package providing data structures, algorithms, and educational resources for bioinformatics.

    Note: scikit-bio is no longer compatible with Python 2. scikit-bio is compatible with Python 3.6 and later.

    scikit-bio is currently in beta. We are very actively developing it, and backward-incompatible interface changes can and will arise. To avoid these types of changes being a surprise to our users, our public APIs are decorated to make it clear to users when an API can be relied upon (stable) and when it may be subject to change (experimental). See the API stability docs for more details, including what we mean by stable and experimental in this context.

    blinkload破解版-outline

    The recommended way to install scikit-bio is via the conda package manager available in Anaconda or miniconda.

    To install the latest release of scikit-bio:

    conda install -c http://conda.anaconda.org/biocore scikit-bio
    

    Alternatively, you can install scikit-bio using pip:

    pip install numpy
    pip install scikit-bio
    

    You can verify your installation by running the scikit-bio unit tests:

    python -m skbio.test
    

    For users of Debian, skbio is in the Debian software distribution and may be installed using:

    sudo apt-get install python3-skbio python-skbio-doc
    

    blinkload破解版-outline

    To get help with scikit-bio, you should use the skbio tag on StackOverflow (SO). Before posting a question, check out SO's guide on how to 安卓手机安装tunsafe. The scikit-bio developers regularly monitor the skbio SO tag.

    blinkload破解版-outline

    Some of the projects that we know of that are using scikit-bio are:

    • QIIME
    • Emperor
    • Gneiss
    • An Introduction to Applied Bioinformatics
    • tax2tree
    • Qiita
    • ghost-tree
    • Platypus-Conquistador

    If you're using scikit-bio in your own projects, feel free to issue a pull request to add them to this list.

    blinkload破解版-outline

    If you're interested in getting involved in scikit-bio development, see CONTRIBUTING.md.

    See the list of scikit-bio's contributors.

    blinkload破解版-outline

    scikit-bio is available under the new BSD license. See COPYING.txt for scikit-bio's license, and the tunsafe安装包 for the licenses of third-party software that is (either partially or entirely) distributed with scikit-bio.

    blinkload破解版-outline

    scikit-bio began from code derived from PyCogent and QIIME, and the contributors and/or copyright holders have agreed to make the code they wrote for PyCogent and/or QIIME available under the BSD license. The contributors to PyCogent and/or QIIME modules that have been ported to scikit-bio are: Rob Knight (@rob-knight), Gavin Huttley (@gavin-huttley), Daniel McDonald (@wasade), Micah Hamady, Antonio Gonzalez (tunsafe安卓百度云), Sandra Smit, Greg Caporaso (@gregcaporaso), Jai Ram Rideout (@jairideout), Cathy Lozupone (@clozupone), Mike Robeson (@mikerobeson), Marcin Cieslik, Peter Maxwell, Jeremy Widmann, Zongzhi Liu, Michael Dwan, Logan Knecht (@loganknecht), Andrew Cochran, Jose Carlos Clemente (@cleme), Damien Coy, Levi McCracken, Andrew Butterfield, Will Van Treuren (@wdwvt1), Justin Kuczynski (@justin212k), Jose Antonio Navas Molina (@josenavas), Matthew Wakefield (@genomematt) and Jens Reeder (@jensreeder).

    blinkload破解版-outline

    scikit-bio's logo was created by Alina Prassas.

                                    西游加速器价格查询,西游加速服务,西游vp加速器,西游加速器官网  速鹰加速器官网网址,速鹰加速器mac下载,速鹰加速器2024年,速鹰加速器vp  一元机场图标,1元机场下载,一推荐,一元机场优惠码  vmess节点官网,vmess节点ios下载,vmess节点pc版下载,vmess节点vqn  归雁加速器ios下载,归雁加速器2024,归雁加速器不能用了,归雁加速器vpm  安卓软件,安卓加速软件,安卓加速器,404bovqn